Investigating the efficiency of Vertical Sub-Surface Flow Constructed Wetlands in the Reduction of Faecal Indicator Bacteria and Organic matter Under Varied Sizes of Gravel Substrate Aggregates

Main Article Content

Khasisi Lukhabi
Wairimu Muia
Julius Kipkemboi

Abstract

Constructed wetlands (CWs) polish wastewater prior to discharge into aquatic receptacles. Size variabilities of substrates used in CWS may have effects on the treatment efficiencies though there is scanty information regarding this aspect in VSSF CWs. To address this knowledge gap, a laboratory scale mesocosm experiment was set up to investigate the potential of a VSSF CW to reduce organic matter and FIB using various gravel substrate aggregate sizes. This consisted of three gravel size treatment units; <12.5, 12.5-18 and 18-24 mm in triplicates. 70 liters of pre-treated wastewater from the final wastewater stabilization pond (WSP) of Egerton University’s WSPs system was added to the units, allowed to settle for 6 weeks for development of biofilms, followed by periodic feeding of equal wastewater quantity on weekly basis and influent and effluent samples collected for 8 weeks for analysis.  Results disclosed reduction efficiency of 95.2, 94.3 and 88.4 % for E coli in the fine, medium and coarse gravel aggregates respectively. Less than 20 % reduction efficiency was recorded for BOD5 in all gravel aggregate sizes. There was no significant variation on performance of the three gravel aggregate sizes in reduction of both FIB and BOD5 (p˃0.05). Poor performance in BOD5 reduction was related to absence of wetland macrophytes in the study. The relatively high reduction efficiency for FIB was attributed to other factors and processes such as predation, mechanical interactions, starvation, microbial interactions and natural die-offs. The study recommends assessing the combined effect of increasing the retention time, use of wetland macrophytes and incorporating various gravel aggregate sizes in order to increase the efficiency of VSSF CW in reduction of FIB and organic matter.

Article Details

How to Cite
Lukhabi, K., Muia, W., & Kipkemboi, J. (2022). Investigating the efficiency of Vertical Sub-Surface Flow Constructed Wetlands in the Reduction of Faecal Indicator Bacteria and Organic matter Under Varied Sizes of Gravel Substrate Aggregates. Pan Africa Science Journal, 1(02), 187–214. https://doi.org/10.47787/pasj.v1i02.15
Section
Environmental Ecology, Technology and Engineering

References

Sundaravadivel M, V. S. (2012). Constructed Wetlands for Wastewater Treatment. Reviews in Environmental Science and Technology, 31, 351–409. DOI: https://doi.org/10.3390/recycling1010003

Sharma, G. (2013). Comparison of Different Types of Media for Nutrient Removal Efficiency in Vertical Up flow. International Journal of Environmental Engineering and Management, 31, 405–416. DOI: https://doi.org/10.1080/20016491089253 DOI: https://doi.org/10.1080/20016491089253

US EPA. (2000). Wastewater technology fact sheet wetlands: Subsurface flow. EPA 832‐F‐00‐023.

Rompré, A., Servais, P., Baudart, J., De-Roubin, M. R., & Laurent, P. (2002). Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. Journal of microbiological methods, 49(1), 31-54. DOI: https://doi.org/10.1016/S0167-7012(01)00351-7 DOI: https://doi.org/10.1016/S0167-7012(01)00351-7

Morsy E.A, Al-Herrawy AZ, Ali, MA. (2007). Assessment of Cryptosporidium removal from domestic wastewater via constructed wetland systems. Water, Air, and Soil Pollution, 179, 207- 215. DOI: https://link.springer.com/article/10.1007/s11270-006-9225-8 DOI: https://doi.org/10.1007/s11270-006-9225-8

Williams, L. A. J., & Chapman, G. R. (1986). Relationships between major structures, salic volcanism and sedimentation in the Kenya Rift from the equator northwards to Lake Turkana. Geological Society Special Publication, 25(25), 59–74. DOI: https://doi.org/10.1144/GSL.SP.1986.025.01.06. DOI: https://doi.org/10.1144/GSL.SP.1986.025.01.06

Vymazal, J. (2005). Removal of Enteric Bacteria in Constructed Treatment Wetlands with Emergent Macrophytes: A Review. Journal of Environmental Science and Health, Part A, 40, 1355–1367. DOI: https://doi.org/10.1081/ESE-200055851 DOI: https://doi.org/10.1081/ESE-200055851

Torrens A, Molle P, Boutin C, Salgot M. (2009). Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent. Water research, 43, 1851-1858. DOI: https://doi.org/10.1016/j.watres.2009.01.023 DOI: https://doi.org/10.1016/j.watres.2009.01.023

UN-HABITAT, (2008). Constructed Wetlands Manual. UN-HABITAT Water for Asian Cities Programme Nepal, Kathmandu.

Burgos, V., Araya, F., Reyes-Contreras, C., Vera, I. & Vidal, G. 2(016). Performance of ornamental plants in mesocosm sub-surface constructed wetlands under different organic sewage loading. Ecological Engineering, 99, 246–255. https://doi.org/10.1016/j.ecoleng.2016.11.058 DOI: https://doi.org/10.1016/j.ecoleng.2016.11.058

Oketch, M. A. (2006). The potential role of constructed wetlands in protection and sustainable management of lake catchments in Kenya. Egerton Journal of Science and Technology, 8, 126-132. DOI: http://hdl.handle.net/1834/1470

Tao, W., Hall, K. J., & Duff, S. J. (2006). Performance evaluation and effects of hydraulic retention time and mass loading rate on treatment of wood waste leachate in surface-flow constructed wetlands. Ecological Engineering, 26(3), 252-265. DOI: https://doi.org/10.1016/j.ecoleng.2005.10.006 DOI: https://doi.org/10.1016/j.ecoleng.2005.10.006

American Public Health Association (APHA) 2005. Standard Methods for the Examination of Water and Wastewater, 21st Edition. Washington, DC.

Pepper IL, Gerba CP. (2004). Environmental Microbiology: A Laboratory Manual. Second Edition. Oxford, UK: Elsevier Academic Press, 105-112.

Sperling. 2007. Wastewater characteristics, Treatment and Disposal. London, U.K: IWA Publishing 1, 23-33.

Zhang L, Xia X, Zhao Y, Xi B, Yanan Y, Guo X, Xiong Y, Zhan, J. (2011). The ammonium nitrogen oxidation process in horizontal subsurface flow constructed wetlands. Ecological Engineering, 37, 1614-1619. DOI: https://doi.org/10.1016/j.ecoleng.2011.06.020 DOI: https://doi.org/10.1016/j.ecoleng.2011.06.020

Zhang LY, Zhang L, Liu YD, Shen YW, Liu H, Xiong Y. (2010). Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination, 250, 915-920. DOI: https://doi.org/10.1016/j.desal.2008.04.062 DOI: https://doi.org/10.1016/j.desal.2008.04.062

Nivala J, Hoos MB, Cross C, Wallace S, Parkin G. (2007). Treatment of landfill leachate using an aerated, horizontal subsurface flow constructed wetland. Science of the Total Environment, 380, 19-27. DOI: https://doi.org/10.1016/j.scitotenv.2006.12.030 DOI: https://doi.org/10.1016/j.scitotenv.2006.12.030

Brix H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology ,35, 11-17. DOI: https://doi.org/10.1016/S0273-1223(97)00047-4 DOI: https://doi.org/10.2166/wst.1997.0154

Sundberg C, Stendahl JSK, Tonderski K, Lindgren P-E (2007) Overland flow systems for treatment of landfill leachates—potential nitrification and structure of the ammonia-oxidising bacterial community during a growing season. Soil Biol Biochem, 39:127–138. DOI: https://doi.org/10.1016/j.soilbio.2006.06.016 DOI: https://doi.org/10.1016/j.soilbio.2006.06.016

Ramirez E, Robles E, Bonilla P, Sainz G, Lopez M, Cerda JM, De La Warren A. (2005). Occurrence of pathogenic free-living amoebae and bacterial indicators in a constructed wetland treating domestic wastewater from a single household. Engineering in Life Sciences, 5, 253-258. DOI: https://doi.org/10.1002/elsc.200420071 DOI: https://doi.org/10.1002/elsc.200420071

Vymazal J, Kröpfelová, L. (2008). Is concentration of dissolved oxygen a good indicator of processes in filtration beds of horizontal-flow constructed wetlands? In: Vymazal, J. (Ed.), Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands. Springer Science þ Business Media B.V., pp. 311-317. DOI: https://link.springer.com/chapter/10.1007/978-1-4020-8235-1_27 DOI: https://doi.org/10.1007/978-1-4020-8235-1_27

Ong SA, Uchiyama K, Inadama D, Ishida Y, Yamagiwa K. (2010). Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresource Technology ,101, 7239-7244. DOI: https://doi.org/10.1016/j.biortech.2010.04.032 DOI: https://doi.org/10.1016/j.biortech.2010.04.032

Rezaei, A., Hassani, H., Hassani, S., Jabbari, N., Fard Mousavi, S. B., & Rezaei, S. (2019). Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundwater for Sustainable Development, 9, 100245. DOI: https://doi.org/10.1016/j.gsd.2019.100245 DOI: https://doi.org/10.1016/j.gsd.2019.100245

World Health Organization (WHO), (2004). Guidelines for Drinking Water Quality, vol. 1. World Health Organization, Geneva

Tyagi VK, Kazmi AA, Chopra AK. (2008). Removal of Faecal Indicators and Pathogens in a Waste Stabilization Pond System Treating Municipal Wastewater in India. Water Environment Research, 80, 2111–2117. DOI: https://doi.org/10.2175/106143008X296433 DOI: https://doi.org/10.2175/106143008X296433

Sakuma T, Jinsiriwanit S, Hattori T, Deshusses MA. (2008). Removal of ammonia from contaminated air in a biotrickling filter - denitrifying bioreactor combination system. Water Research, 42, 4507-4513. DOI: https://doi.org/10.1016/j.watres.2008.07.036 DOI: https://doi.org/10.1016/j.watres.2008.07.036

Haarstad K, Bavor HJ, Maehlum T. (2012). Organic and metallic pollutants in water treatment and natural wetlands: a review. Water Sci and Technology, 65, 77–99. DOI: https://doi.org/10.2166/wst.2011.831 DOI: https://doi.org/10.2166/wst.2011.831

Kalipci E. (2011). Investigation of decontamination effect of Phragmites australis for Konya domestic wastewater treatment. Medicinal Plants Research, 5, 6571–6577. DOI: https://doi.org/10.5897/JMPR11.1142 DOI: https://doi.org/10.5897/JMPR11.1142

Taylor CR, Hook PB, Steinc OR, Zabinski CA. (2011). Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms. Ecological Engineering, 37, 703–710. DOI: https://doi.org/10.1016/j.ecoleng.2010.05.007 DOI: https://doi.org/10.1016/j.ecoleng.2010.05.007

Kouki S, M'hiri F, Saidi N, Belai S, Hassen A. 2009. Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle. Desalination, 246, 452-467. DOI: https://doi.org/10.1016/j.desal.2008.03.067 DOI: https://doi.org/10.1016/j.desal.2008.03.067

Mbuligwe SE. Comparative effectiveness of engineered wetland systems in the treatment of anaerobically pre-treated domestic wastewater, (2004). Ecol Eng, 23, 269–84. DOI: https://doi.org/10.1016/j.ecoleng.2004.09.009 DOI: https://doi.org/10.1016/j.ecoleng.2004.09.009

Pandey MK, Kansakar BR, Tare V, Jenssen PD. Feasibility study of municipal wastewater treatment using pilot scale constructed wetlands in Nepal. Proc. 10th International Water Association Conference on Wetland Systems for Water Pollution Control. MAOTDR (Ministério do Ambiente, do Ordenamento do Territórioe do Desenvolvimento Regional), Lisbon, Portugal; 2006. p. 1919–26.

Dallas S, Ho G. Subsurface flow reedbeds using alternative media for the treatment of domestic greywater in Monteverde, Costa Rica, Central America, (2005). Wat Sci Tech, 51(10):119–28. DOI: https://doi.org/10.2166/wst.2005.0358 DOI: https://doi.org/10.2166/wst.2005.0358

Karathanasis AD, Potter CL, Coyne MS. Vegetation effect on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. (2003). Ecol Eng, 20, 157–69. DOI: https://doi.org/10.1016/S0925-8574(03)00011-9 DOI: https://doi.org/10.1016/S0925-8574(03)00011-9

Akratos CS, Tsihrintzis, VA. (2007). Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological engineering, 29, 173-191. DOI: https://doi.org/10.1016/j.ecoleng.2006.06.013 DOI: https://doi.org/10.1016/j.ecoleng.2006.06.013

Headley TR, Herity E, Davison L. (2005). Treatment at different depths and vertical mixing within a 1-m deep horizontal subsurface flow wetland. Ecological Engineering, 25, 567-582. DOI: https://doi.org/10.1016/j.ecoleng.2005.07.012 DOI: https://doi.org/10.1016/j.ecoleng.2005.07.012

Abira, M. A. (2008). A Pilot Constructed Treatment Wetland for Pulp and Paper Mill Wastewater: Performance, Processes and Implications for the Nzoia River, Kenya, PhD Thesis, UNESCO-IHE, Delft, Netherlands. DOI: https://doi.org/10.1201/9781439828366

Sun GT. (2011). Enhanced denitrification and organics removal in hybrid wetland columns: comparative experiments. Bioresource Technology, 102, 967-974. DOI: https://doi.org/10.1016/j.biortech.2010.09.056 DOI: https://doi.org/10.1016/j.biortech.2010.09.056

Tee HC, Lim PE, Seng CE, Nawi M. (2012). Newly developed baffled subsurface-flow constructed wetland for the enhancement of nitrogen removal. Bioresources Technology, 104, 235-242. DOI: https://doi.org/10.1016/j.biortech.2011.11.032 DOI: https://doi.org/10.1016/j.biortech.2011.11.032

Gunes K. (2007). Restaurant wastewater treatment by constructed wetlands. Clean, 35, 571-575. DOI: https://doi.org/10.1002/clen.200700142 DOI: https://doi.org/10.1002/clen.200700142

Richardson SD, Rusch K A. (2005). Faecal coliform removal within a marshland upwelling system consisting of scatlake soils. Journal of environmental engineering, 131, 60-70. DOI: https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9372(2005)131:1(60) DOI: https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(60)

García-Pérez A, Harrison, M, Chivers, C, Grant, B. (2015). Recycled Shredded-Tire Chips Used as Support Material in a Constructed Wetland Treating High-Strength Wastewater from a Bakery. Recycling, 1, 3-13. DOI: https://doi.org/10.3390/recycling1010003 DOI: https://doi.org/10.3390/recycling1010003

Albalawneh A, Chang TK, Chou CS, Naoum S. (2016). Efficiency of a Horizontal Sub-Surface Flow Constructed Wetland Treatment System in an Arid Area. Water, 8, 51. DOI: https://doi.org/10.3390/w8020051 DOI: https://doi.org/10.3390/w8020051

Wu, S., Carvalho, P. N., Müller, J. A., Manoj, V. R. & Dong, R. 2016. Sanitation in constructed wetlands: a review on the removal of human pathogens and fecal indicators. Science of the Total Environment, 541,8-12. DOI: https://doi.org/10.1016/j.scitotenv.2015.09.047 DOI: https://doi.org/10.1016/j.scitotenv.2015.09.047

Tanner CC, Clayton JS, Upsdell MP. (1995). Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands-I. Removal of oxygen demand, suspended solids and faecal coliforms. Water Resources, 29, 17–26. DOI: https://doi.org/10.1016/0043-1354(94)00139-X DOI: https://doi.org/10.1016/0043-1354(94)00139-X

Arias CA, Cabello A, Brix H, Johansen NH. (2003). Removal of indicator bacteria from municipal wastewater in an experimental two-stage vertical flow constructed wetland system. Water Science and Technology, 48, 35-41. DOI: https://doi.org/10.2166/wst.2003.0274 DOI: https://doi.org/10.2166/wst.2003.0274

Wand H, Vacca G, Kuschk P, Krüger M, Kästner M. (2007). Removal of bacteria by filtration in planted and non-planted sand columns. Water Research, 41, 159–167. DOI: https://doi.org/10.1016/j.watres.2006.08.024 DOI: https://doi.org/10.1016/j.watres.2006.08.024

Truu, M., Juhanson, J., & Truu, J. (2009). Microbial biomass, activity and community composition in constructed wetlands. Science of the Total Environment, 407(13), 3958–3971. DOI: https://doi.org/10.1016/j.scitotenv.2008.11.036 DOI: https://doi.org/10.1016/j.scitotenv.2008.11.036

Sleytr K, Tietz A, Langergraber G, Haberl R. (2007). Investigation of bacterial removal during the filtration process in constructed wetlands. Science of the Total Environment, 380, 173–180. DOI: https://doi.org/10.1016/j.scitotenv.2007.03.001 DOI: https://doi.org/10.1016/j.scitotenv.2007.03.001

Decamp O, Warren A, Sanchez R. 1999. The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators. Water Science and Technology, 40, 91–98. DOI: https://doi.org/10.1016/S0273-1223(99)00444-8 DOI: https://doi.org/10.2166/wst.1999.0143

Omondi, D. O., Wairimu, M. A., Maingi, M. S., Otieno, O. G., Jepkorir, K. C., Okoth, O. J., & Bangding, X. (2018). Integrating MFT-qPCR techniques in constructed wetland faecal bacterial purification monitoring; a case of a typical tropical hybrid constructed wetland system. Water Science and Technology, 78(9), 2008-2018. DOI: https://doi.org/10.2166/wst.2018.475 DOI: https://doi.org/10.2166/wst.2018.475